Poly(amidoamine) dendrimers on lipid bilayers I: Free energy and conformation of binding.

نویسندگان

  • Christopher V Kelly
  • Pascale R Leroueil
  • Elizabeth K Nett
  • Jeffery M Wereszczynski
  • James R Baker
  • Bradford G Orr
  • Mark M Banaszak Holl
  • Ioan Andricioaei
چکیده

Third-generation (G3) poly(amidoamine) (PAMAM) dendrimers are simulated approaching 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers with fully atomistic molecular dynamics, which enables the calculation of a free energy profile along the approach coordinate. Three different dendrimer terminations are examined: protonated primary amine, uncharged acetamide, and deprotonated carboxylic acid. As the dendrimer and lipids become closer, their attractive force increases (up to 240 pN) and the dendrimer becomes deformed as it interacts with the lipids. The total energy release upon binding of a G3-NH3+, G3-Ac, or G3-COO- dendrimer to a DMPC bilayer is, respectively, 36, 26, or 47 kcal/mol or, equivalently, 5.2, 3.2, or 4.7x10(-3) kcal/g. These results are analyzed in terms of the dendrimers' size, shape, and atomic distributions as well as proximity of individual lipid molecules and particular lipid atoms to the dendrimer. For example, an area of 9.6, 8.2, or 7.9 nm2 is covered on the bilayer for the G3-NH3+, G3-Ac, or G3-COO- dendrimers, respectively, while interacting strongly with 18-13 individual lipid molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(amidoamine) dendrimers on lipid bilayers II: Effects of bilayer phase and dendrimer termination.

The molecular structures and enthalpy release of poly(amidoamine) (PAMAM) dendrimers binding to 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers were explored through atomistic molecular dynamics. Three PAMAM dendrimer terminations were examined: protonated primary amine, neutral acetamide, and deprotonated carboxylic acid. Fluid and gel lipid phases were examined to extract the eff...

متن کامل

Partitioning of poly(amidoamine) dendrimers between n-octanol and water.

Dendritic nanomaterials are emerging as key building blocks for a variety of nanoscale materials and technologies. Poly(amidoamine) (PAMAM) dendrimers were the first class of dendritic nanomaterials to be commercialized. Despite numerous investigations, the environmental fate, transport, and toxicity of PAMAM dendrimers is still not well understood. As a first step toward the characterization o...

متن کامل

Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport.

We have investigated poly(amidoamine) (PAMAM) dendrimer interactions with supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers and KB and Rat2 cell membranes using atomic force microscopy (AFM), enzyme assays, flow cell cytometry, and fluorescence microscopy. Amine-terminated generation 7 (G7) PAMAM dendrimers (10-100 nM) were observed to form holes of 15-40 nm in diamete...

متن کامل

A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes.

The interaction between PAMAM (polyamidoamine) dendrimer generation 4 (G4) and 3,5 (G3,5) with model lipid membranes composed of dipalmytoylphosphatidylcholine (DPPC) has been investigated. Differential scanning calorimetry (DSC) and Raman spectroscopy were applied to assess the thermodynamic changes caused by PAMAM G4 and G3,5 and to specify the exact location of these dendrimers into the DPPC...

متن کامل

Studying the Corrosion Protection Behavior of an Epoxy Composite Coating Reinforced with Functionalized Graphene Oxide by Second and Fourth Generations of Poly(amidoamine) Dendrimers (GO-PAMAM-2, 4)

In this research, graphene oxide (GO) nanoparticles were modified by second and fourth generations of poly(amidoamine) dendrimers in order to improve the particle dispersion quality in the epoxy matrix and therefore its barrier anti-corrosion performance. Confirmation on the GO surface modification by Polyamidoamine generation 2 (PAMAM2) and polyamidoamin generation 4 (PAMAM4) was carried o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 112 31  شماره 

صفحات  -

تاریخ انتشار 2008